Stimulators of Mineralization Limit the Invasive Phenotype of Human Osteosarcoma Cells by a Mechanism Involving Impaired Invadopodia Formation

نویسندگان

  • Anna Cmoch
  • Paulina Podszywalow-Bartnicka
  • Malgorzata Palczewska
  • Katarzyna Piwocka
  • Patrick Groves
  • Slawomir Pikula
  • Ted S. Acott
چکیده

BACKGROUND Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). RESULTS In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. CONCLUSIONS Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-32: Implantation and Recurrent PregnancyLoss

Background: Recurrent pregnancy loss (RPL), defined as 3 or more consecutive pregnancy failures, is a common and distressing disorder. Chromosome instability in the conceptus is the most common cause whereas uterine factors are invariably invoked to explain nonchromosomal miscarriages. These uterine factors are, however, poorly defined. Materials amd Methods: Laboratory-based analysis of endome...

متن کامل

Antibacterial Activity of Elephant Garlic and Its Effect against U2OS Human Osteosarcoma Cells

  Objective(s): The present study was designed to investigate the antibacterial function and pharmacological effect of elephant garlic (Allium ampeloprasum var. ampeloprasum) on U2OS human osteosarcoma cells.   Materials and Methods: Seven kinds of bacteria were reconstituted, inoculated and tested in this research to evaluate elephant garlic antibacterial activity. By the means ...

متن کامل

Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion

Invasive cancer cells form dynamic adhesive structures associated with matrix degradation called invadopodia. Calpain 2 is a calcium-dependent intracellular protease that regulates adhesion turnover and disassembly through the targeting of specific substrates such as talin. Here, we describe a novel function for calpain 2 in the formation of invadopodia and in the invasive abilities of breast c...

متن کامل

Molecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells

Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cel...

متن کامل

Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells.

Proteolytic degradation of the extracellular matrix by metastatic tumor cells is initiated by the formation of invadopodia, i.e., actin-driven filopodia-like membrane protrusions endowed with matrix-degradative activity. A signaling cascade involving neural Wiskott-Aldrich syndrome protein and the Arp2/3 actin nucleating complex is involved in actin assembly at invadopodia. Yet, the mechanism o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014